
Don't misunderstand my intentions, dear reader. I wish Mr. Musk all the best. If climate scientists are correct, technological societies ought to be doing everything they can to get citizens out of their cars, out of airplanes, and into trains. Generally I am in favor of any project that gets us one step closer to that goal. However, expensive failures would hurt the legitimacy of alternative transportation projects, in addition to sucking up capital that could be used on projects that are more likely to succeed. So what leads me to believe that the Hyperloop, as currently envisioned, is probably destined for trouble?
Musk's proposals, as well as the arguments of many of his cheerleaders, are marked by an extreme degree of faith in the power of engineering calculation. This faith flies in the face of much of the history of technological change, which has primarily been a incremental, trial-and-error affair often resulting in more failures than success stories. The complexity of reality and of contemporary technologies dwarfs people's ability to model and predict. Hyman Rickover, the officer in charge of developing the Navy's first nuclear submarine, described at the length the significant differences between "paper reactors" and "real reactors," namely that the latter are usually behind schedule, hugely expensive, and surprisingly complicated by what would normally be trivial issues. In fact, part of the reason the early nuclear energy industry was such a failure, in terms of safety oversights and being hugely over budget, was that decisions were dominated by enthusiasts and that they scaled the technology up too rapidly, building plants six times larger than those that currently existed before having gained sufficient expertise with the technology.
Musk has yet to build a full-scale Hyperloop, leaving unanswered questions as to whether or not he can satisfactorily deal with the complications inherent in shooting people down a pressurized tube at 800 miles an hour. All publicly available information suggests he has only constructed a one-mile mock-up on his company's property. Although this is one step beyond a "paper" Hyperloop, a NY to DC line would be approximately 250 times longer. Given that unexpected phenomena emerge with increasing scale, Musk would be prudent to start smaller. Doing so would be to learn from the US's and Germany's failed efforts to develop wind power in 1980s. They tried to build the most technically advanced turbines possible, drawing on recent aeronautical innovations. Yet their efforts resulted in gargantuan turbines that failed often within tens of operating hours. The Danes, in contrast, started with conventional designs, incrementally scaling up designs andlearning from experience.
Apart from the scaling-up problem, Musk's project relies on simultaneously making unprecedented advances in tunneling technology. The "Boring Company" website touts their vision for managing to accomplish a ten-fold decrease in cost through potential technical improvements: increasing boring machine power, shrinking tunnel diameters, and (more dubiously) automating the tunneling process. As a student of technological failure, I would question the wisdom of throwing complex and largely experimental boring technology into a project that is already a large, complicated endeavor that Musk and his employees have too little experience with. A prudent approach would entail spending considerable time testing these new machines on smaller projects with far less financial risk before jumping headfirst into a Hyperloop project. Indeed, the failure of the US space shuttle can be partly attributed to the desire to innovate in too many areas at the same time.
Moreover, Musk's proposals seem woefully uninformed about the complications that arise in tunnel construction, many of which can sink a project. No matter how sophisticated or well engineered the technology involved, the success of large-scale sociotechnical projects are incredibly sensitive to unanticipated errors. This is because such projects are highly capital intensive and inflexibly designed. As a result, mistakes increase costs and, in turn, production pressures--which then contributes to future errors. The project to build a 2 mile tunnel to replace the Alaska Way Viaduct, for instance, incurred a two year, quarter billion dollar delay after the boring machine was damaged after striking a pipe casing that went unnoticed in the survey process. Unless taxpayers are forced to pony up for those costs, you can be sure that tunnel tolls will be higher than predicted. It is difficult to imagine how many hiccups could stymie construction on a 250 mile Hyperloop. Such errors will invariably raise the capital costs of the project, costs that would need to be recouped through operating revenues. Given the competition from other trains, driving, and flying, too high of fares could turn the Hyperloop into a luxury transport system for the elite. Concorde anyone?
Again, while I applaud Musk's ambition, I worry that he is not proceeding intelligently enough. Intelligently developing something like a Hyperloop system would entail focusing more on his own and his organization's ignorance, avoiding the tendency to become overly enamored with one's own technical acumen. Doing so would also entail not committing oneself too early to a certain technical outcome but designing so as to maximize opportunities for learning as well as ensuring that mistakes are relatively inexpensive to correct. Such an approach, unfortunately, is rarely compatible with grand visions of immediate technical progress, at least in the short-term. Unfortunately, many of us, especially Silicon Valley venture capitalists, are too in love with those grand visions to make the right demands of technologists like Musk.